MCPs to improve your Agent in Cursor

MCPs Configurations to customize AI behavior, streamline the development and tailor code generation, suggestions and queries to your framework and language.

Vercel

V Vercel
View on GitHub
Custom Installation Active
Overview

Vercel MCP Integration

A Model Context Protocol (MCP) integration for Vercel's REST API, providing programmatic access to Vercel deployment management through AI Assistants like Claude and Cursor.

πŸ“‹ Overview Last updated: May 2025

This MCP server implements Vercel's core API endpoints as tools, enabling:

  • Deployment monitoring & management
  • Environment variable retrieval
  • Project deployment status tracking
  • Team creation and management
  • CI/CD pipeline integration

✨ Features

Current Tools

Deployment Management

Project Management

Environment Management

Team Management

πŸ›£οΈ Roadmap

  • Deployment creation workflow
  • Project management tools
  • Team management integration (List & Create teams)
  • Advanced error handling

πŸ“š Tool Documentation

For detailed information about each tool, please refer to the following documentation:

πŸš€ Getting Started

Prerequisites

  • Node.js 18+
  • Vercel API Token
  • MCP Client (Claude, Cursor, or other AI Assistants that support MCP)

Installation

git clone [your-repo-url]
cd vercel-mcp
npm install

Configuration

  1. Create .env file:
VERCEL_API_TOKEN=your_api_token_here
  1. Start MCP server:
npm start

πŸ”— Integrating with AI Assistants

Integrating with Claude

Claude supports MCP tools via its Anthropic Console or Claude Code interface.

  1. Start the MCP server locally with npm start
  2. In Claude Code, use the /connect command:
    /connect mcp --path [path-to-server]
    
    For CLI-based servers using stdio, specify the path to the server executable
  3. Claude will automatically discover the available Vercel tools
  4. You can then ask Claude to perform Vercel operations, for example:
    Please list my recent Vercel deployments using the vercel-list-all-deployments tool
    
  5. Alternatively, you can expose the MCP server as an HTTP server with a tool like mcp-proxy
    npm install -g @modelcontextprotocol/proxy
    mcp-proxy --stdio --cmd "npm start" --port 3399
    
    Then connect in Claude: /connect mcp --url http://localhost:3399

Integrating with Cursor

Cursor has built-in support for MCP tools through its extension system.

  1. Start the MCP server with npm start
  2. In Cursor, access Settings β†’ Tools
  3. Under "Model Context Protocol (MCP)", click "+ Add MCP tool"
  4. Configure a new connection:
    • For stdio transport: Point to the executable path
    • For HTTP transport: Specify the URL (e.g., http://localhost:3399)
  5. Cursor will automatically discover the available Vercel tools
  6. Use Cursor's AI features to interact with your Vercel deployments by mentioning the tools in your prompts

Programmatic Integration

You can also use the Model Context Protocol SDK to integrate with the server programmatically in your own applications:

import { Client } from "@modelcontextprotocol/sdk/client";

// Create an MCP client connected to a stdio transport
const client = new Client({
  transport: "stdio",
  cmd: "npm --prefix /path/to/vercel-mcp start",
});

// Or connect to an HTTP transport
const httpClient = new Client({
  transport: "http",
  url: "http://localhost:3399",
});

// Connect to the server
await client.connect();

// List available tools
const { tools } = await client.listTools();
console.log(
  "Available tools:",
  tools.map((t) => t.name)
);

// Call a tool
const result = await client.callTool({
  name: "vercel-list-all-deployments",
  args: { limit: 5 },
});

console.log("Deployments:", result);

// You can also use this in an Express server:
app.post("/api/deployments", async (req, res) => {
  try {
    const result = await client.callTool({
      name: "vercel-list-all-deployments",
      args: req.body,
    });
    res.json(result);
  } catch (error) {
    res.status(500).json({ error: error.message });
  }
});

πŸ› οΈ Tool Usage Examples

Here are some quick examples to get you started. For comprehensive documentation and more examples, please refer to the tool documentation.

List Recent Deployments

const response = await mcpClient.callTool({
  name: "vercel-list-all-deployments",
  args: {
    limit: 5,
    target: "production",
  },
});

Create a New Project

const project = await mcpClient.callTool({
  name: "vercel-create-project",
  args: {
    name: "my-awesome-project",
    framework: "nextjs",
    teamId: "team_1a2b3c4d5e6f7g8h9i0j1k2l",
  },
});

Deploy from Git

const deployment = await mcpClient.callTool({
  name: "vercel-create-deployment",
  args: {
    project: "my-project-id",
    gitSource: {
      type: "github",
      ref: "main",
    },
  },
});

For more detailed examples including file deployments, environment management, and team operations, see the documentation:

🐳 Docker Deployment

Build the Image

docker build -t vercel-mcp .

Run Container

docker run -it --rm \
  -e VERCEL_API_TOKEN=your_token_here \
  -p 3399:3399 \
  vercel-mcp

Production Deployment

docker run -d \
  --name vercel-mcp \
  --restart unless-stopped \
  -e VERCEL_API_TOKEN=your_token_here \
  -p 3399:3399 \
  vercel-mcp

Development with Live Reload

docker build --target builder -t vercel-mcp-dev .
docker run -it --rm \
  -e VERCEL_API_TOKEN=your_token_here \
  -p 3399:3399 \
  -v $(pwd)/src:/app/src \
  vercel-mcp-dev

πŸ—‚οΈ Project Structure

src/
β”œβ”€β”€ constants/       # Tool definitions
β”œβ”€β”€ tools/
β”‚   β”œβ”€β”€ deployments/ # Deployment handlers
β”‚   β”‚   β”œβ”€β”€ handlers.ts
β”‚   β”‚   β”œβ”€β”€ schema.ts
β”‚   β”‚   └── types.ts
β”‚   └── environments/# Environment management
β”œβ”€β”€ utils/          # API helpers
└── index.ts         # Server entrypoint

πŸ”§ Configuration

Environment Variables

Variable Description Required
VERCEL_API_TOKEN Vercel access token Yes

🀝 Contributing

  1. Fork the repository
  2. Create feature branch (git checkout -b feature/amazing-feature)
  3. Commit changes (git commit -m 'Add amazing feature')
  4. Push to branch (git push origin feature/amazing-feature)
  5. Open Pull Request

πŸ“„ License

MIT License - see LICENSE for details

1